Serotonin enhances solitariness in phase transition of the migratory locust
نویسندگان
چکیده
The behavioral plasticity of locusts is a striking trait presented during the reversible phase transition between solitary and gregarious individuals. However, the results of serotonin as a neurotransmitter from the migratory locust Locusta migratoria in phase transition showed an alternative profile compared to the results from the desert locust Schistocerca gregaria. In this study, we investigated the roles of serotonin in the brain during the phase change of the migratory locust. During the isolation of gregarious nymphs, the concentration of serotonin in the brain increased significantly, whereas serotonin receptors (i.e., 5-HT 1 , 5-HT 2 , and 5-HT 7 ) we identified here showed invariable expression patterns. Pharmacological intervention showed that serotonin injection in the brain of gregarious nymphs did not induced the behavioral change toward solitariness, but injection of this chemical in isolated gregarious nymphs accelerated the behavioral change from gregarious to solitary phase. During the crowding of solitary nymphs, the concentration of serotonin in the brain remained unchanged, whereas 5-HT 2 increased after 1 h of crowding and maintained stable expression level thereafter. Activation of serotonin-5-HT2 signaling with a pharmaceutical agonist inhibited the gregariousness of solitary nymphs in crowding treatment. These results indicate that the fluctuations of serotonin content and 5-HT 2 expression are results of locust phase change. Overall, this study demonstrates that serotonin enhances the solitariness of the gregarious locusts. Serotonin may regulate the withdrawal-like behavioral pattern displayed during locust phase change and this mechanism is conserved in different locust species.
منابع مشابه
Two dopamine receptors play different roles in phase change of the migratory locust
The migratory locust, Locusta migratoria, shows remarkable phenotypic plasticity at behavioral, physiological, and morphological levels in response to fluctuation in population density. Our previous studies demonstrated that dopamine (DA) and the genes in the dopamine metabolic pathway mediate phase change in Locusta. However, the functions of different dopamine receptors in modulating locust p...
متن کاملProteomic analysis reveals that COP9 signalosome complex subunit 7A (CSN7A) is essential for the phase transition of migratory locust
The migratory locust displays a reversible, density-dependent transition between the two phases of gregaria and solitaria. This phenomenon is a typical kind of behavior plasticity. Here, we report that COP9 signalosome complex subunit 7A (CSN7A) is involved in the regulation of locust phase transition. Firstly, 90 proteins were identified to express differentially between the two phases by quan...
متن کاملCSP and Takeout Genes Modulate the Switch between Attraction and Repulsion during Behavioral Phase Change in the Migratory Locust
Behavioral plasticity is the most striking trait in locust phase transition. However, the genetic basis for behavioral plasticity in locusts is largely unknown. To unravel the molecular mechanisms underlying the behavioral phase change in the migratory locust Locusta migratoria, the gene expression patterns over the time courses of solitarization and gregarization were compared by oligonucleoti...
متن کاملThe neuropeptide F/nitric oxide pathway is essential for shaping locomotor plasticity underlying locust phase transition
Behavioral plasticity is widespread in swarming animals, but little is known about its underlying neural and molecular mechanisms. Here, we report that a neuropeptide F (NPF)/nitric oxide (NO) pathway plays a critical role in the locomotor plasticity of swarming migratory locusts. The transcripts encoding two related neuropeptides, NPF1a and NPF2, show reduced levels during crowding, and the tr...
متن کاملModulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway.
The migratory locust, Locusta migratoria, shows a striking phenotypic plasticity. It transitions between solitary and gregarious phases in response to population density changes. However, the molecular mechanism underlying the phase-dependent behavior changes remains elusive. Here we report a genome-wide gene expression profiling of gregarious and solitary nymphs at each stadium of the migrator...
متن کامل